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Critical exponents and percolation thresholds in two-dimensional systems
with a finite interplane coupling
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Classical site percolation was used to study numerically the effect of interplane coupling in the range
10 1-108 of the in-plane coupling on the static correlation length expomeand the critical dimensio.
It was found that even for the smallest coupling values the exponents take their three-dimgi@&ipralues
for sufficiently large system sizes. The percolation threslpgldhowever, varies continuously from the 2D to
the 3D value with a power-law exponest0.41(2), which, to within error, is the same for simple cubic, bcc,
and fcc lattices. As predicted by renormalization-group theory this exponent equals the inverse of the suscep-
tibility exponenty=43/18.
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The static critical behavior of quasi-two-dimensional CuQ, planes in each unit cell and one connecting the spins
magnetic systems has become of theoretical and experimepetween unit cell§9]. The effect of interplane coupling on
tal interest again since the discovery of superconductivity inhe linewidth in electron-spin resonance spectroscopy was
doped LaCuOQ, in 1986[1]. One focus of such investiga- compared in the quasi-2D magnetic systeaMKF, (antifer-
tions was the possibly anomalous critical behavior of di|utedfomagnetica||y ordergdand a system with an appreciable
magnetic systems, where Cu is replaced with nonmagnetigoupling (NaCr$, in-plane ferromagngf10]. A crossover
atoms. Contrary to the classical two-dimensiof&d) mag-  from 1D to 2D has been studied for weak and intermediate
nets, which follow closely the theoretical expectations of 2Dcouplings in a spin-ladder system Sr(Cyzn,),05 [11,17.
Ising modelq 2], diluted Lg(Cu, -, Mg,) O, was reported to Theoretically, the dimensional crossover was studied by
have a much smaller critical threshold concentrakigifior a  renormalization-group methods by Liu and Star]lég] and
finite Neel temperature Ty) [3]. While the former are well Chang and Stanlej14]. They showed rigorously that the
described by the site percolation on a 2D lattizg~¢0.41)  crossover exponent should equal the susceptibility exponent
the threshold in L Cy, - ,Mg,) O, was reported to extrapo- of the in-plane dimension. The crossover in quasi-2D sys-
late tox.~0.2. This behavior, most recently, lead to the pro-tems has not been studied using percolation methods to our
posal of an effective 2D quantum nonlinear sigma modeknowledge.
combined with classical percolation theory which was able We study numerically the effect of an arbitrary interplane
to reproduce a lower critical threshold]. Essentially, the coupling on the static correlation length exponerihearp,)
guantum fluctuations were made responsible for the deviaand on the thresholg. in classical site percolation. The
tion from the classical percolation value for the threshold.critical exponentr takes its 2D value for small coupling in
These results, however, were contradicted by quantursmall systems; for sufficiently large systems, even for the
Monte Carlo simulations, which showed that for all spin val-weakest interplane coupling studied (Poand 10°°), the
ues studied$=1/2, 1, 3/2, and pthe threshold remained the 3D behavior is approached. Similar results are obtained for
classical percolation ong5]. Instead, some of the critical the critical dimensionalityD at p.. However, even a weak
exponents near, were found to take on spin-dependent val- 3D coupling in quasi-2D lattices has a significant influence
ues. Other refinements of the 2D Heisenberg antiferromagen the percolation threshold in the infinite-size limit. Over a
netic model include in-plane next-nearest-neighbor interacrange of six orders of magnitude in interplane couplipg,
tions [6] or the study of two interpenetrating Cu systemsand hence the critical concentratiap=(1—p.) vary con-
with different Neel temperatures such as in,615,0,Cl, [7].  tinuously between the limiting 2D and 3D values with an

The coupling of spins to neighboring planes in theexponent . This exponent agrees well with the
quasi-2D magnetic system is smafbn the order of renormalization-group predicted value af=+y '=18/43
10 2-10 ° of the in-plane couplingand may be neglected ~0.419[14,15.
in a zeroth-order approach. However, it serves as the seed for We determined the percolation threshalg, the critical
the observed 3D ordering that would else not occur at finiteexponentsy andD by studying the cluster properties of ran-
temperatures. The transition to long-range order in thelomly generated X L XL lattice sites of simple cubi¢so),
La,Cu0, system was discussed, e.g., in R&f; in spite of  body-centered and face-centered-cubic systems. We focused
the weak coupling a N temperature of 325 K marks the on two types of wrapping probabilities employing periodic
importance of 3D coupling. Keimest al. suggested that the boundary conditions similar to the procedure by Newman
effective interplane coupling constantg¢; is scaled by the and Ziff [16]. They are(i) a wrap around two lattice direc-
square of the correlation length.¢£?~1 [8]. In more com-  tions and not the third andi) a wrap only around one di-
plicated systems, such as YRa,Og, there are two inter- rection and neither of the two others. In the 3D isotropic
plane coupling constants, one between the spins in the twiimit these probabilities are triply degenerate for wrapping
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FIG. 1. 2D and 3D site percolation thresholds as determined by
the finite-size scaling method. The dashed lines indicate the most

accurate literature values from Refd6] (2D) and[18] (3D). The

from Fig. 2 and agree with the literature values (/333 and 0.88

[15]).

coupling the wrapping of typéi) is doubly degenerate i

system size L

-C _ ( . FIG. 2. Gaussian width of the wrapping probability ty(ie (see
critical exponentsv in two and three dimensions were extracted text) as a function of sizé in a simple cubic system for various

interplane coupling coefficients. The number given is the negative

exponent in the coupling strength, i.e~1107?,

etc. The critical

) exponenty is determined from the slope of these curves. The fits to
aroundx, y, or z and serve as an independent check for theahe 2D and 3D limits are shown as full lines, the dashed lines are
random number generation. In 2D and for a finite interplangeast square fits with the 3D exponems 0.90, 0.85, 0.88, and

0.85 (+0.03) forcs=

1071, 1072, 1073,

and 104, respectively.

andy. Other wrapping probabilities are, in principle, inter- The inset shows on an enlarged scale how in the largest system
the probabilities to wrap around either direc-studied the points foc;=10"° and 10 ° deviate from the 2D limit
tion), but those studied here are most suitable for determintblack dotg towards 3D behavior.

esting (e.g.,
ing the critical threshold due to their local maximum near

p.. We mapped the interplane coupling strength onto thdind P

in a plane above or below with probability<tc;=<

ability p, determines the sizes of all clusters, one cluster at ®2°(p.)=1.906(6) (exact

1 (sc and

P and pZP

in agreement with these values and of
percolation problem by connecting in-plane nearest neighsufficient accuracyon the order of 10%) for the current
bors in a given cluster with full probability=1) and those work. In Fig. 2 we show the dependence of the width on
system size, which determines®®=1.33(1) and »?°
fcc); for the bce system a similar schema was adapted. For 0.89(1) compared to the literature values of<4/333 and
c;=1 (c;=0) the 3D(2D) isotropic limits are recovered.

0.88[15]. The fractional dimensionalityp at thresholdp.
For the cluster analysis we developed an efficient, multiwas also determined. It is derived from the logarithmic slope
spin coded algorithm that, for a particular occupation prob-of the largest cluster ap. vs system size, and we found

value 91/481.896)

and

time. If one or several of the six wrapping probabilities de-D3P(p.)=2.51(2) (literature value 2.58[15]. In general,
scribed occurred, this was noted, the cluster-size distributiothe agreement is excellent and shows that our algorithm per-
then sorted, and zeroth, first, and second moment calculatefbrms adequately in these limif&9].

We first show our results of interplane coupling on the
10 and 10000 times to obtain the desired statistical signifieritical exponenty, which describes the divergence of the
cance and thep incremented through the threshold region. correlation length in a physical system in the vicinity qf;

The two types of wrapping probabilities in three dimensiong15],

This procedure was repeated for each probabgityetween

for a given system size have a different maximum near the

percolation threshold. Both maxima, however, converge to

the critical threshold for an infinitely large system in the

usual way[15], i.e.,

with width A that is proportional ta\«L ~*” [15]. As was

pl(;_ pcm L—l/v'

oY)

vergence. In Fig. 1 we show the convergence of p‘cuno—
wards the best literature values in tW}0.592 746 2{(13)

Ref.

[16]]

and

three

dimensions [simple

cubic,

Ex|p—pc| "

@

It is expected that for large enough anisotropic systems the
3D behavior will be obtained. In Fig. 2 we show the line-
widths of our wrapping probabilities as a function of system
size for various values of the interplane coupling coefficient
wherev is the critical exponent of the system under consid-c;. The data points foc;=10"* and 10 ? apparently all lie
eration. It is determined by fitting the maxima to a Gaussiaron a line parallel to the 3D isotropic limitcf=1) but are
shifted vertically by some amount. In other words, for a
suggested by Watanab&7] and demonstrated for 2D in Ref. given system size a decreasing coupling strength leads to
[16], the periodic boundary conditions make for a rapid con-larger linewidths, and the linewidths continue to scale with
the 3D critical exponent=0.88. For smaller interplane cou-
pling values (10°-10%) a different behavior is observed.

In smaller systems the linewidth falls on the limiting curve
0.311 608 ) Ref.[18]], as a function of system size. We for two dimensions and deviates from this limit only as the
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FIG. 3. The percolation thresholal, as a function of coupling
coefficient in three differently coordinated cubic systelfse
(circles, bcc (triangles, and fcc(diamond$]. The solid symbols
correspond to maxima in the wrapping probabilities. The slopes
best fits to the solid symbols, are the same, to within error, for sc,. . -1 - .
bce, and fcc |attiCESk=yO.4l(2) and define a power-law exponent. gth _are the data fop>p, where theD=3 classical space
A . . imension is recovered.
The open symbols were not size converged and not included in the
fit [20]. ASC=0.3485), AP°°=0.442), and A'°=0571). To
system size increases. This is the crossover region where tMéthin error, « is independent of the coordination number in
exponentr changes from 2D to 3D value. For largethis  the three_ cuplc systems. TI’.IIS. result is to be compared to the
crossover occurs for small system sizes, for smallarger ~ renormalization-group prediction of Chang and Starflisy].
and larger systems are needed to feel the interplane couplinildeed we find that the inverse af in Eq. (3), to high
We thus confirm that in the infinite-size limit the critical accuracy, equals the susceptibility exponent in 2B:y~*
exponentv always takes its 3D value, even for an infinitesi- = 18/43~0.419[15]. From a percolation point of view our
mal (but finite) interplane coupling strength. Studies of the result means that an unlikely additionadlirection path in a
quantities related to the critical exponente.g., the correla- quasi-2D percolation problem will substantially increase the
tion length ¢, in quasi-2D physical systemfsvhich usually ~ Wrapping chances and hence redupgsompared to the 2D
are in the large-size limitshould thus be performed on the value. In physical terms this predicts that even a small cou-
basis of the 3D value of. pling as always present in real crystals will sensitively influ-
How does the percolation threshold depend on theéence the phase transition in a way described by (Bg.To
strength of the interplane coupling? The observed crossovélive @ quantitative example, only for an interplane coupling
from 2D to 3D behavior in Fig. 2 as a function of system sizeStrength of 10*°—much smaller than typically observed—
makes it impracticable to apply the scaling law Eg) for does the threshold deviate less than 4&om the exact 2D
the determination off.. For the smallest interplane coupling value. In a real sample the interplane coupling always in-
the exponent is not constant in the crossover region and thecreases the critical concentratigg=1—p. for magnetic or- -
usual straight line on a log-log plot is not expected. How-dering. Inhomogeneities and thus a spatially fluctuating in-
ever, for large enough system sizes has reached its terplane coupling are a source of broadening or even shifts in
asymptotic value within our statistical error, and we can takgluasi-2D phase transitions. _
the largest system investigated for a speaificto have a After having determineg,, itis interesting to take a look
converged value. In Fig. 3 we plot the so determined threshat the critical dimensio® at p. which describes how fractal
olds p. in sc, bee, and fec as given by the maxima in thethe largest cluster is or, in other words, how the nastthe
wrapping probabilities. For interplane couplingstx10~5  largest cluster scales with system size
(so the finite-size effects become noticeable, in that even the D
largest system studied has not yet reached a constant thresh- sl ™. )

old value(open symbols We fitted the solid points in Fig. 3 In Fig. 4 we show our data that determifefor coupling

to a power law and find the same exponent0.41(2) for oy 5 :
the three differently coordinated cubic systems. The interpoefﬂments between £0and 10°® taking for p; the data

. e points of Fig. 3. There is apparently a 2D-3D crossover in
plane couping cosficienty and the {resnold fo percols e ctcaldimension as welbes seen for, 10 ), ang

again we confirm that in the limit of infinite system size even
—(pe— pgD) — A(co)". 3) the smallest interplane coupling leads to a three-dimensional
behavior of the critical dimension. The size dependence of
We find a power-law relationship between these two quantithe largest cluster should sensitively depend on being close
ties forc;<1 with an exponenk=0.41(2) and coefficients to p.. In Fig. 4 (open circley we show data fop>p. (c;

FIG. 4. Maximal cluster size at percolation threshold for differ-
ent interplane coupling strengths in the sc system. The slopes of
these curves yield the critical dimensiBn The crossover from 2D
to 3D is nicely seen from curve d.e., c;=10"%). Also shown for
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=10"1), whereD should be equal to the space dimensionbehavior:p, varies continuously with a power-law depen-

[15]; our value of Dy 4726~ 3.06(6) shows that ap dence(for c;<1) on the _mt_er_plan_e co_uphng_c_oefflqlent from

—0.4728 we are indeed above the threshigid (. —10-1) 2D to 3D even in the infinite-size limit, giving rise to an
H f7

=0.4629. This study of the fractal nature of the largest Clus_expon'ent{<20.41(2) which is thg same for sc, bce, and fce
ter atp, shows again the crossover from 2D to 3D coordination. The exponent confirms accurately the 30-year-
c .

old prediction of renormalization-group methods that the

In conclusion, we studied numerically the consequences .
. . L . - ~crossover exponent equals the susceptibility exponent. One
of interplane coupling on the phase transition in quasi-2D : . L .

. . . consequence of classical site percolation is that for finite
percolation. In a range of relative coupling strengths from

10° to 10 ° of the intraplane coupling, both the static corre- coupling the Fhreshold Is a'W"?‘yS !°W¢r than the 2D_va|ue and
lation length exponent and the critical dimensioD at hence the critical concentration in diluted magnetic systems

threshold show a crossover from 2D to 3D for sufficiently Is always larger than the 2D one. Smaller valuegpﬁn
: - such systems are thus not due to interplane coupling.

large system sizes as expected from renormalization-group

theory. Quasi-2D magnetic systems, in spite of their weak

interplane coupling strengths, should thus be regarded as 3D Useful discussions with S. Reich on the topic are grate-

systems with respect to their critical exponents as we explictully acknowledged. | thank M. Steiner for bringing up the

itly show for » andD. The threshold has an entirely different issue of weak interplane coupling in a seminar.
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