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Critical exponents and percolation thresholds in two-dimensional systems
with a finite interplane coupling
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Classical site percolation was used to study numerically the effect of interplane coupling in the range
1021–1026 of the in-plane coupling on the static correlation length exponentn and the critical dimensionD.
It was found that even for the smallest coupling values the exponents take their three-dimensional~3D! values
for sufficiently large system sizes. The percolation thresholdpc , however, varies continuously from the 2D to
the 3D value with a power-law exponentk50.41(2), which, to within error, is the same for simple cubic, bcc,
and fcc lattices. As predicted by renormalization-group theory this exponent equals the inverse of the suscep-
tibility exponentg543/18.
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The static critical behavior of quasi-two-dimension
magnetic systems has become of theoretical and experim
tal interest again since the discovery of superconductivity
doped La2CuO4 in 1986 @1#. One focus of such investiga
tions was the possibly anomalous critical behavior of dilu
magnetic systems, where Cu is replaced with nonmagn
atoms. Contrary to the classical two-dimensional~2D! mag-
nets, which follow closely the theoretical expectations of
Ising models@2#, diluted La2(Cu12xMgx)O4 was reported to
have a much smaller critical threshold concentrationxc for a
finite Néel temperature (TN) @3#. While the former are well
described by the site percolation on a 2D lattice (xc'0.41)
the threshold in La2(Cu12xMgx)O4 was reported to extrapo
late toxc'0.2. This behavior, most recently, lead to the p
posal of an effective 2D quantum nonlinear sigma mo
combined with classical percolation theory which was a
to reproduce a lower critical threshold@4#. Essentially, the
quantum fluctuations were made responsible for the de
tion from the classical percolation value for the thresho
These results, however, were contradicted by quan
Monte Carlo simulations, which showed that for all spin v
ues studied (S51/2, 1, 3/2, and 2! the threshold remained th
classical percolation one@5#. Instead, some of the critica
exponents nearxc were found to take on spin-dependent v
ues. Other refinements of the 2D Heisenberg antiferrom
netic model include in-plane next-nearest-neighbor inter
tions @6# or the study of two interpenetrating Cu system
with different Néel temperatures such as in Sr2Cu3O4Cl2 @7#.

The coupling of spins to neighboring planes in t
quasi-2D magnetic system is small~on the order of
1023–1026 of the in-plane coupling! and may be neglecte
in a zeroth-order approach. However, it serves as the see
the observed 3D ordering that would else not occur at fin
temperatures. The transition to long-range order in
La2CuO4 system was discussed, e.g., in Ref.@8#; in spite of
the weak coupling a Ne´el temperature of 325 K marks th
importance of 3D coupling. Keimeret al. suggested that the
effective interplane coupling constantsae f f is scaled by the
square of the correlation lengthae f fj

2'1 @8#. In more com-
plicated systems, such as YBa2Cu3O6, there are two inter-
plane coupling constants, one between the spins in the
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l
n-

n

d
tic

-
l

e

a-
.
m
-

g-
c-

for
e
e

o

CuO2 planes in each unit cell and one connecting the sp
between unit cells@9#. The effect of interplane coupling on
the linewidth in electron-spin resonance spectroscopy
compared in the quasi-2D magnetic system K2MnF4 ~antifer-
romagnetically ordered! and a system with an appreciab
coupling (NaCrS2, in-plane ferromagnet! @10#. A crossover
from 1D to 2D has been studied for weak and intermedi
couplings in a spin-ladder system Sr(Cu12xZnx)2O3 @11,12#.

Theoretically, the dimensional crossover was studied
renormalization-group methods by Liu and Stanley@13# and
Chang and Stanley@14#. They showed rigorously that th
crossover exponent should equal the susceptibility expon
of the in-plane dimension. The crossover in quasi-2D s
tems has not been studied using percolation methods to
knowledge.

We study numerically the effect of an arbitrary interpla
coupling on the static correlation length exponentn ~nearpc)
and on the thresholdpc in classical site percolation. Th
critical exponentn takes its 2D value for small coupling in
small systems; for sufficiently large systems, even for
weakest interplane coupling studied (1025 and 1026), the
3D behavior is approached. Similar results are obtained
the critical dimensionalityD at pc . However, even a weak
3D coupling in quasi-2D lattices has a significant influen
on the percolation threshold in the infinite-size limit. Over
range of six orders of magnitude in interplane coupling,pc
and hence the critical concentrationxc5(12pc) vary con-
tinuously between the limiting 2D and 3D values with a
exponent k. This exponent agrees well with th
renormalization-group predicted value ofk5g21518/43
'0.419@14,15#.

We determined the percolation thresholdpc , the critical
exponentsn andD by studying the cluster properties of ran
domly generatedL3L3L lattice sites of simple cubic~sc!,
body-centered and face-centered-cubic systems. We foc
on two types of wrapping probabilities employing period
boundary conditions similar to the procedure by Newm
and Ziff @16#. They are~i! a wrap around two lattice direc
tions and not the third and~ii ! a wrap only around one di
rection and neither of the two others. In the 3D isotrop
limit these probabilities are triply degenerate for wrappi
©2002 The American Physical Society04-1
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aroundx, y, or z and serve as an independent check for
random number generation. In 2D and for a finite interpla
coupling the wrapping of type~ii ! is doubly degenerate inx
and y. Other wrapping probabilities are, in principle, inte
esting ~e.g., the probabilities to wrap around either dire
tion!, but those studied here are most suitable for determ
ing the critical threshold due to their local maximum ne
pc . We mapped the interplane coupling strength onto
percolation problem by connecting in-plane nearest ne
bors in a given cluster with full probability (51) and those
in a plane above or below with probability 0<cf<1 ~sc and
fcc!; for the bcc system a similar schema was adapted.
cf51 (cf50) the 3D~2D! isotropic limits are recovered.

For the cluster analysis we developed an efficient, mu
spin coded algorithm that, for a particular occupation pro
ability p, determines the sizes of all clusters, one cluster
time. If one or several of the six wrapping probabilities d
scribed occurred, this was noted, the cluster-size distribu
then sorted, and zeroth, first, and second moment calcula
This procedure was repeated for each probabilityp between
10 and 10 000 times to obtain the desired statistical sign
cance and thenp incremented through the threshold regio
The two types of wrapping probabilities in three dimensio
for a given system sizeL have a different maximum near th
percolation threshold. Both maxima, however, converge
the critical threshold for an infinitely large system in th
usual way@15#, i.e.,

pc
L2pc}L21/n, ~1!

wheren is the critical exponent of the system under cons
eration. It is determined by fitting the maxima to a Gauss
with width D that is proportional toD}L21/n @15#. As was
suggested by Watanabe@17# and demonstrated for 2D in Re
@16#, the periodic boundary conditions make for a rapid co
vergence. In Fig. 1 we show the convergence of ourpc

L to-
wards the best literature values in two@0.592 746 21~13!
Ref. @16## and three dimensions @simple cubic,
0.311 608 0~4! Ref. @18##, as a function of system size. W

FIG. 1. 2D and 3D site percolation thresholds as determined
the finite-size scaling method. The dashed lines indicate the m
accurate literature values from Refs.@16# ~2D! and @18# ~3D!. The
critical exponentsn in two and three dimensions were extract
from Fig. 2 and agree with the literature values (4/3'1.33 and 0.88
@15#!.
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find pc
2D and pc

3D in agreement with these values and
sufficient accuracy~on the order of 1024) for the current
work. In Fig. 2 we show the dependence of the width
system size, which determinesn3D51.33(1) and n2D

50.89(1) compared to the literature values of 4/3'1.33 and
0.88 @15#. The fractional dimensionalityD at thresholdpc
was also determined. It is derived from the logarithmic slo
of the largest cluster atpc vs system size, and we foun
D2D(pc)51.906(6) ~exact value 91/48'1.896) and
D3D(pc)52.51(2) ~literature value 2.53! @15#. In general,
the agreement is excellent and shows that our algorithm
forms adequately in these limits@19#.

We first show our results of interplane coupling on t
critical exponentn, which describes the divergence of th
correlation lengthj in a physical system in the vicinity ofpc
@15#,

j}up2pcu2n. ~2!

It is expected that for large enough anisotropic systems
3D behavior will be obtained. In Fig. 2 we show the lin
widths of our wrapping probabilities as a function of syste
size for various values of the interplane coupling coefficie
cf . The data points forcf51021 and 1022 apparently all lie
on a line parallel to the 3D isotropic limit (cf51) but are
shifted vertically by some amount. In other words, for
given system size a decreasing coupling strength lead
larger linewidths, and the linewidths continue to scale w
the 3D critical exponentn50.88. For smaller interplane cou
pling values (1023–1026) a different behavior is observed
In smaller systems the linewidth falls on the limiting curv
for two dimensions and deviates from this limit only as t

y
st

FIG. 2. Gaussian width of the wrapping probability type~ii ! ~see
text! as a function of sizeL in a simple cubic system for variou
interplane coupling coefficients. The number given is the nega
exponent in the coupling strength, i.e, 1→1021, etc. The critical
exponentn is determined from the slope of these curves. The fits
the 2D and 3D limits are shown as full lines, the dashed lines
least square fits with the 3D exponentsn50.90, 0.85, 0.88, and
0.85 (60.03) for cf51021, 1022, 1023, and 1024, respectively.
The inset shows on an enlarged scale how in the largest sy
studied the points forcf51025 and 1026 deviate from the 2D limit
~black dots! towards 3D behavior.
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system size increases. This is the crossover region wher
exponentn changes from 2D to 3D value. For largecf this
crossover occurs for small system sizes, for smallcf larger
and larger systems are needed to feel the interplane coup
We thus confirm that in the infinite-size limit the critica
exponentn always takes its 3D value, even for an infinites
mal ~but finite! interplane coupling strength. Studies of th
quantities related to the critical exponentn, e.g., the correla-
tion lengthj, in quasi-2D physical systems~which usually
are in the large-size limit! should thus be performed on th
basis of the 3D value ofn.

How does the percolation threshold depend on
strength of the interplane coupling? The observed cross
from 2D to 3D behavior in Fig. 2 as a function of system s
makes it impracticable to apply the scaling law Eq.~1! for
the determination ofpc . For the smallest interplane couplin
the exponentn is not constant in the crossover region and
usual straight line on a log-log plot is not expected. Ho
ever, for large enough system sizespc has reached its
asymptotic value within our statistical error, and we can ta
the largest system investigated for a specificcf to have a
converged value. In Fig. 3 we plot the so determined thre
olds pc in sc, bcc, and fcc as given by the maxima in t
wrapping probabilities. For interplane couplings,431025

~sc! the finite-size effects become noticeable, in that even
largest system studied has not yet reached a constant th
old value~open symbols!. We fitted the solid points in Fig. 3
to a power law and find the same exponentk50.41(2) for
the three differently coordinated cubic systems. The in
plane coupling coefficientcf and the threshold for percola
tion in the range studied are thus related by

2~pc2pc
2D!5A~cf !

k. ~3!

We find a power-law relationship between these two qua
ties for cf!1 with an exponentk50.41(2) and coefficients

FIG. 3. The percolation thresholdpc as a function of coupling
coefficient in three differently coordinated cubic systems@sc
~circles!, bcc ~triangles!, and fcc ~diamonds!#. The solid symbols
correspond to maxima in the wrapping probabilities. The slop
best fits to the solid symbols, are the same, to within error, for
bcc, and fcc lattices:k50.41(2) and define a power-law exponen
The open symbols were not size converged and not included in
fit @20#.
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Asc50.348(5), Abcc50.44(2), and Af cc50.57(1). To
within error,k is independent of the coordination number
the three cubic systems. This result is to be compared to
renormalization-group prediction of Chang and Stanley@14#.
Indeed we find that the inverse ofk in Eq. ~3!, to high
accuracy, equals the susceptibility exponent in 2D:k5g21

518/43'0.419 @15#. From a percolation point of view ou
result means that an unlikely additionalz-direction path in a
quasi-2D percolation problem will substantially increase
wrapping chances and hence reducespc compared to the 2D
value. In physical terms this predicts that even a small c
pling as always present in real crystals will sensitively infl
ence the phase transition in a way described by Eq.~3!. To
give a quantitative example, only for an interplane coupli
strength of 10210—much smaller than typically observed—
does the threshold deviate less than 1024 from the exact 2D
value. In a real sample the interplane coupling always
creases the critical concentrationxc512pc for magnetic or-
dering. Inhomogeneities and thus a spatially fluctuating
terplane coupling are a source of broadening or even shift
quasi-2D phase transitions.

After having determinedpc , it is interesting to take a look
at the critical dimensionD at pc which describes how fracta
the largest cluster is or, in other words, how the masss of the
largest cluster scales with system sizeL,

s}LD. ~4!

In Fig. 4 we show our data that determineD for coupling
coefficients between 100 and 1025 taking for pc the data
points of Fig. 3. There is apparently a 2D-3D crossover
the critical dimension as well~best seen forcf51024), and
again we confirm that in the limit of infinite system size ev
the smallest interplane coupling leads to a three-dimensio
behavior of the critical dimension. The size dependence
the largest cluster should sensitively depend on being c
to pc . In Fig. 4 ~open circles! we show data forp.pc (cf

s,
c,

he

FIG. 4. Maximal cluster size at percolation threshold for diffe
ent interplane coupling strengthscf in the sc system. The slopes o
these curves yield the critical dimensionD. The crossover from 2D
to 3D is nicely seen from curve 4~i.e., cf51024). Also shown for
cf51021 are the data forp.pc where theD53 classical space
dimension is recovered.
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51021), whereD should be equal to the space dimensi
@15#; our value of D (p50.4728)53.06(6) shows that atp
50.4728 we are indeed above the threshold@pc,(cf51021)

50.4628#. This study of the fractal nature of the largest clu
ter atpc shows again the crossover from 2D to 3D.

In conclusion, we studied numerically the consequen
of interplane coupling on the phase transition in quasi-
percolation. In a range of relative coupling strengths fro
100 to 1026 of the intraplane coupling, both the static corr
lation length exponentn and the critical dimensionD at
threshold show a crossover from 2D to 3D for sufficien
large system sizes as expected from renormalization-gr
theory. Quasi-2D magnetic systems, in spite of their we
interplane coupling strengths, should thus be regarded a
systems with respect to their critical exponents as we exp
itly show for n andD. The threshold has an entirely differe
r
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behavior:pc varies continuously with a power-law depe
dence~for cf!1) on the interplane coupling coefficient from
2D to 3D even in the infinite-size limit, giving rise to a
exponentk50.41(2) which is the same for sc, bcc, and f
coordination. The exponent confirms accurately the 30-ye
old prediction of renormalization-group methods that t
crossover exponent equals the susceptibility exponent.
consequence of classical site percolation is that for fin
coupling the threshold is always lower than the 2D value a
hence the critical concentration in diluted magnetic syste
is always larger than the 2D one. Smaller values ofxc in
such systems are thus not due to interplane coupling.

Useful discussions with S. Reich on the topic are gra
fully acknowledged. I thank M. Steiner for bringing up th
issue of weak interplane coupling in a seminar.
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